研究对应于欧氏空间中最小(非格)半格S的baby Tits-Kantor-Koecher(TKK)李代数g(T(S))的泛中心扩张广义baby TKK代数g(T)的一类boson场下的不可约表示,这里T(S)为半格S∈Rv(v=2)上的Jordan代数.给出了广义baby TKK代数在Fock空间V上所确定的一个完全可约模,并且通过定义正规序给出了该Fock空间V的一个分次表示.
In this paper we study an irreducible representation with bosonic states for the extended baby TKK algebra g(T(S)) which is obtained from the Jordan algebra T(S) with the smallest possible(nonlattice) semilattice in the Euclidean space.Then we give a completely reducible representation for the extended baby TKK lie algebra g(T(S)),and we give a Z2-grading on the Fock space by defining a normal ordering.