所谓图Rn是指具有如下结构的平面图:Rn=(VE),其中顶点集合V={u1,u2,…,un)∪{v1,V2,…,vn),边集合E={uiui+1,vivi+1,uivi,uivi+1│i=1,2,…,n),其中un+1=u1,vn+1=v1.通过研究Rn的邻点可区别关联着色,给出了当n=4,n是3或者5的正整数倍时,Rn的邻点可区别关联色数.
The graph Rn is defined byRn = (V, E), V={u1,u2,…,un)∪{v1,V2,…,vn) and E = {uiui+1,vivi+1,uivi,uivi+1│i=1,2,…,n)}, where un+1 = u1, vn+l = v1. By studying the adjacent vertex distinguishing incidence coloring of Rn, we determine the adjacent vertex distinguishing incidence coloring numbers of them, when n = 4, n = 3k or n = 5k ( k is a positive integer).