位置:成果数据库 > 期刊 > 期刊详情页
基于改进带偏置概率矩阵分解算法的研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:河南理工大学计算机科学与技术学院,河南焦作454000
  • 相关基金:国家自然科学基金资助项目(61202286);015年度河南省高等学校重点科研项目(15A520074)
中文摘要:

针对个性化推荐过程中高维稀疏性问题,提出一种将奇异值分解技术和带偏置概率矩阵分解相结合的推荐方法.利用SVD算法初始化用户项目潜在因子向量,避免因随机赋值使得函数陷入局部最优解;接着将用户项目的偏置信息融入到概率矩阵分解算法中,同时为了提升训练速度和推荐精度,通过动量加速的迷你批量样度下降(mini batch gradient descent,miniBGD)来训练;最后利用分解后的两个低维矩阵对原矩阵中的未知评分进行预测.在三个公开数据集的实验结果表明,提出的算法相对于传统的算法能够有效地提高推荐精度,进一步缓解由数据高维稀疏性带来的推荐质量不高的问题.

同期刊论文项目
期刊论文 30 会议论文 1
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049