位置:成果数据库 > 期刊 > 期刊详情页
基于co-ICIB联合聚类的舆情监测系统设计
  • ISSN号:1673-9787
  • 期刊名称:河南理工大学学报(自然科学版)
  • 时间:2013.10.1
  • 页码:592-595
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]河南理工大学计算机科学与技术学院,河南焦作454000, [2]河南省科学技术信息研究院,郑州450003
  • 相关基金:国家自然科学基金资助项目(61202286);国家社会科学基金资助项目(11CYYO19);河南省社科联项目(SKL-2013-486);河南理工大学青年骨干教师资助项目.
  • 相关项目:面向社区的协同检索方法研究
中文摘要:

基于CO—ICIB联合聚类的舆情监测系统的设计为舆情信息库,它通过联合聚类等数据挖掘算法可以快速及时地发现新的舆论热点.当舆论热点被确认,即在互联网上真正成为一个备受关注的话题时,文本分类算法可以将同一话题内的信息归类,有助于跟踪舆情的发展趋势.该舆情监测系统可为舆情监管部门提供原始舆情资料、数据性图表和建议性分析.

英文摘要:

A public sentiment monitoring system is designed, based on coICIB coclustering. The system col lects the information from micro blogs and blogs, creates public sentiment database and analyzes the hot points and development trend of public sentiment by such data mining algorithms as coclustering. Once hot points are confirmed, which means they become truly concentrated topics in Internet, text categorization algorithms could group the information of the same topic into one category and help the track trend of public sentiment. The results of the system could provide the original public sentiment data, data chart and suggestion analysis for a public sentiment supervision department.

同期刊论文项目
期刊论文 30 会议论文 1
同项目期刊论文
期刊信息
  • 《河南理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:河南理工大学
  • 主办单位:河南理工大学
  • 主编:杨小林
  • 地址:河南省焦作市世纪大道2001号
  • 邮编:454000
  • 邮箱:zkxb@hpu.edu.cn
  • 电话:0391-3987253 3987068
  • 国际标准刊号:ISSN:1673-9787
  • 国内统一刊号:ISSN:41-1384/N
  • 邮发代号:
  • 获奖情况:
  • 河南省一级期刊,中文核心期刊,科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:4522