位置:成果数据库 > 期刊 > 期刊详情页
Research on stability and Hopf bifurcation of marine ecosystem dynamics models
  • 期刊名称:Acta Oceanologica Sinica, 2016, DOI: 10.1007/s1313
  • 时间:0
  • 页码:-
  • 分类:P642.22[天文地球—工程地质学;天文地球—地质矿产勘探;天文地球—地质学] Q178.53[生物学—水生生物学;生物学—普通生物学]
  • 作者机构:[1]College of Environmental Science andEngineering, Ocean University of China, Qingdao 266100, China, [2]The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China, [3]School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China
  • 相关基金:Supported by the National Natural Science Foundation of China(Nos.41206111,41206112)
  • 相关项目:基于全局灵敏度和伴随方法的海洋生态动力学模型参数优化
中文摘要:

海洋的生态系统动态模型(MEDM ) 是为海洋的生态系统的模拟和预言的重要工具。这篇文章总结为 MEDM 技巧的改进和评价使用的方法和策略,并且它试图建立一个技术框架有关 MEDM 技巧改进启发进一步的想法。MEDM 的技巧能被参数优化(PO ) 改进,它是在模型刻度的重要的步。解决 MEDM 抑制的 PO 的问题的一条有效途径是敏感分析和 PO 的全球处理。模型确认是必要步骤追随者 PO,它由分析并且估计优化模型的 goodness-of-fit 验证模型刻度的效率。由在模型技巧上集中于各种各样的因素的影响的度,另外,模型无常分析能供应模型用户对模型信心的一个量的评价。关于 MEDM 的研究是进行中的;然而,在模型技巧的改进仍然缺乏全球处理,它的评价不是综合的。因此, MEDM 的预兆的表演不是强壮的,模型无常缺乏量的描述,限制他们的申请。因此,有关模型技巧的很多案例研究应该被执行为 MEDM 技巧的改进支持一个科学、标准的技术框架的发展。

英文摘要:

Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization(PO), which is an important step in model calibration. An effi cient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the effi ciency of model calibration by analyzing and estimating the goodness-of-fi t of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confi dence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientifi c and normative technical framework for the improvement of MEDM skill.

同期刊论文项目
同项目期刊论文