在这份报纸,我们与 Soret 和 Dufour 效果在动人的摆动的拉长表面上学习不稳定的联合的热和二维的 MHD 液体的集体转移。粘滞驱散效果在精力方程被采用。一个一致磁场垂直地被用于流动方向。管理方程被归结为非线性的联合部分微分方程并且借助于 homotopy 分析方法(火腿) 解决了。象磁性的参数, Dufour 数字, Soret 数字, Prandtl 数字和到它流动和热转移特征上的拉长的率的表的摆动频率的比率那样的一些物理参数的效果被说明并且分析。
In this paper, we study the unsteady coupled heat and mass transfer of two-dimensional MHD fluid over a moving oscillatory stretching surface with Soret and Dufour effects. Viscous dissipation effects are adopted in the energy equation. A uniform magnetic field is applied vertically to the flow direction. The governing equations are reduced to non-linear coupled partial differential equations and solved by means of homotopy analysis method (HAM). The effects of some physical parameters such as magnetic parameter, Dufour number, Soret number, the Prandtl num- ber and the ratio of the oscillation frequency of the sheet to its stretching rate on the flow and heat transfer characteristics are illustrated and analyzed.