位置:成果数据库 > 期刊 > 期刊详情页
基于多特征融合和随机森林的视网膜血管分割
  • ISSN号:1003-9775
  • 期刊名称:《计算机辅助设计与图形学学报》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中南大学文学与新闻传播学院,长沙410083, [2]中南大学信息科学与工程学院,长沙410083, [3]移动医疗教育部-中国移动联合实验室,长沙410083
  • 相关基金:国家自然科学基金(61573380,61562029).
中文摘要:

为了进行眼底疾病辅助诊断,提出一种基于多特征融合和随机森林的视网膜血管分割方法.首先为彩色眼底图中的每个像素点提取一个23维特征向量(包括图像不变矩、灰度共生矩阵、LoG结合高斯二阶导、梯度法、相位一致性和Hessian矩阵特征);然后选取一定数量的像素点,提取其特征共同构造一个特征矩阵作为输入数据,并采用随机森林算法训练分类器;再用训练好的分类器对待分割图像中的像素点进行分类,判断其是否为血管点;最后在初步分割基础上进行基于连通区域补足血管的后处理,得到优化后的血管分割结果.在DRIVE公共数据库上进行实验的结果表明,该方法平均精确度达0.9606,平均灵敏度达0.7447,平均特异性达0.9838,比已有方法性能更优.

英文摘要:

For the ophthalmic disease computer-aided diagnosis,this paper presents a multiple feature fusionfundus retinal blood vessels segmentation algorithm based on Random Forest.For each pixel in the field ofview,a23-D feature vector is constructed(encoding information on the moment invariant,gray levelco-occurrence matrix,LoG with Gaussian second derivative,gradient of the image,phase congruency andHessian matrix).Then a matrix is constructed for pixel of the training set as the input of the Random Forest;as a result,a Random Forest classifier used for classifying the test images is obtained.Finally,thepost-processing method based on the connected area is used to make up blood vessels.The experimental resulttesting on DRIVE database demonstrates that our method performance is better than other state-of-theartmethods based on machine learning.Meanwhile,the average accuracy,sensitivity,specificity are0.9606,0.7447,0.9838,respectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752