位置:成果数据库 > 期刊 > 期刊详情页
彩色眼底图像视网膜血管分割方法研究进展
  • ISSN号:1003-9775
  • 期刊名称:《计算机辅助设计与图形学学报》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中南大学信息科学与工程学院,长沙410083, [2]移动医疗教育部-中国移动联合实验室,长沙410083, [3]湖南理工学院计算机学院,岳阳414000
  • 相关基金:国家自然科学基金(61173122,61573380,61262032,61562029);湖南省博士生科研创新项目(CX2013B074);高等学校博士学科点专项科研基金(20130162120089).
中文摘要:

视网膜血管分割方法是眼科计算机辅助诊断和大规模疾病筛查系统的基础, 文中讨论了基于彩色眼底图像的视网膜血管分割方法研究进展. 概述了该领域的背景意义、常用标准库、性能衡量指标、采用的主要算法及其优缺点, 旨在快速地引导研究人员了解本领域研究内容. 视网膜血管分割方法可分为基于血管跟踪的方法、基于匹配滤波的方法、基于形态学处理的方法、基于形变模型的方法和基于机器学习的方法等5 大类, 各类方法都各有特点, 为后期研究提供了基础. 其中基于机器学习的方法是目前最重要的分割方法, 以数据驱动的方式为眼科辅助诊断系统提供依据. 尽管研究人员已经做了大量工作, 视网膜血管分割依然有进一步提高精度和效率的空间. 眼底图中其他生理结构和各种病灶的干扰, 微小血管、视盘内血管、新生毛细血管网等的分割, 都是血管分割问题中有待解决的难点.

英文摘要:

Retinal vessel segmentation is the basis of the ophthalmic disease computer-aided diagnosis and large-scale screening system. This paper reviews the progress of retinal vessel segmentation in fundus image. Paper outlines the background and significance of this research, the commonly used standard databases, performance metrics, the advantages and disadvantages of the vessel segmentation algorithms. It is aimed at quickly guiding researchers to understand the contents of this field. The method of retinal vessel segmenta-tion can be divided into five main categories: blood vessel tracking, matched filtering, mathematical mor-phology, deformable model based, and machine learning. All the methods contain their own characteristics and contribute to the latter researches, among which machine learning based method is the most important one. It provides the decision support for the computer-aided diagnosis with clues by data-driven approach. Although researchers have done a lot of work, retinal vessel segmentation still can be improved in accuracy and efficiency. There are many difficulties to be resolved in retinal vessel segmentation, such as the inter-ference by physiological structure and lesions, and the segmentation of microvascular, vessels on the optic disc and intraretinal microvascular abnormalities (IRMA).

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机辅助设计与图形学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国计算机学会
  • 主编:鲍虎军
  • 地址:北京2704信箱
  • 邮编:100190
  • 邮箱:jcad@ict.ac.cn
  • 电话:010-62562491
  • 国际标准刊号:ISSN:1003-9775
  • 国内统一刊号:ISSN:11-2925/TP
  • 邮发代号:82-456
  • 获奖情况:
  • 第三届国家期刊奖提名奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:24752