位置:成果数据库 > 期刊 > 期刊详情页
一种高效的多层和概化关联规则挖掘方法
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]复旦大学计算机科学技术学院,上海200433
  • 相关基金:国家自然科学基金重大研究计划重点项目(90818023);国家重点基础研究发展计划(973)(2005CB321905)
中文摘要:

通过对分类数据的深入研究,提出了一种高效的多层关联规则挖掘方法:首先,根据分类数据所在的领域知识构建基于领域知识的项相关性模型DICM(domain knowledge.based item correlation model),并通过该模型对分类数据的项进行层次聚类;然后,基于项的聚类结果对事务数据库进行约简划分;最后,将约简划分后的事务数据库映射至一种压缩的AFOPT树形结构,并通过遍历AFOPT树替代原事务数据库来挖掘频繁项集.由于缩小了事务数据库规模,并采用了压缩的AFOPT结构,所提出的方法有效地节省了算法的I/O时间,极大地提升了多层关联规则的挖掘效率.基于该方法,给出了一种自顶向下的多层关联规则挖掘算法TD-CBP-MLARM和一种自底向上的多层关联规则挖掘算法BU-CBP-MLARM.此外,还将该挖掘方法成功扩展至概化关联规则挖掘领域提出了一种高效的概化关联规则挖掘算法CBP。GARM.通过大量人工随机生成数据的实验证明,所提出的多层和概化关联规则挖掘算法不仅可以确保频繁项集挖掘结果的正确性和完整性,还比现有同类最新算法具有更好的挖掘效率和扩展性.

英文摘要:

This paper proposes a idea for mining multiple-level and generalized association rules. First, an item correlation model is set up, based on the domain knowledge and clusters the items according to their correlation. Secondly, the transaction database, based on the item clusters, are reduced which make the transaction database smaller. Finally, the partitioned transaction databases are projected onto a compact structure called AFOPT-tree and find the frequent itemsets from the AFOPT. Based on the proposed idea, this paper proposes a top-down algorithm TD-CBP-MLARM and a bottom-up algorithm BU-CBP-MLARM to mine the multiple-level association rules. Additionally, this paper extends the idea to a generalized mining association rule and gives a new efficient algorithm CBP-GARM. The experiments show that the proposed algorithms not only corrects and completes mining results, but also outperform the well-known and current algorithms in mining effectiveness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609