位置:成果数据库 > 期刊 > 期刊详情页
HLA仿真系统实时性改进方法关键技术的分析
  • ISSN号:0367-6234
  • 期刊名称:《哈尔滨工业大学学报》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京科技经营管理学院计算机信息工程系,北京102206, [2]哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(60875013).
中文摘要:

在数据挖掘隐私保护进行协作数据分析时,部分数据集可能分属不同的数据对象,处理时就需要采取不同的数据失真方法.提出了一组全新的数据失真优化策略,通过将属性划分与奇异值分解法(SVD)、非负矩阵因子分解法(NMF)、离散小波变换法(DWT)相结合,运用4种方案对隐私保护原始数据集的子矩阵进行扰动,并用一些衡量指标来衡量这些策略的效果;利用基于支持向量机(SVM)的二元分类来进行数据实用性的检测.结果表明与数据失真单策略相比,新提出的方案在实现数据隐私和数据实用性的良好平衡方面效果十分显著,为协作数据分析提供了可行性解决方案.

英文摘要:

In collaborative data analysis of privacy preservation based on data mining, part of the data sets may come from different data objects and may be processed using different data distortion methods. This paper proposes a group of data distortion strategies. By combining the property division with the singular value decomposition (SVD), non-negative matrix factorization (NMF), and discrete wavelet transform (DWT), four schemes are used to disturb the sub-matrix of the original data matrix of privacy preservation, and with some measurable indicators to measure the effectiveness of these strategies. Data utility is examined by using a binary classification method based on the support vector machine (SVM). Experimental results indicate that, in comparison with the individual data distortion techniques, the proposed schemes are very efficient in achieving a good trade-off between data privacy and data utility, providing a feasible solution for collaborative data analysis.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工业大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工业大学
  • 主编:冷劲松
  • 地址:哈尔滨市南岗区西大直街92号
  • 邮编:150001
  • 邮箱:
  • 电话:0451-86403427 86414135
  • 国际标准刊号:ISSN:0367-6234
  • 国内统一刊号:ISSN:23-1235/T
  • 邮发代号:14-67
  • 获奖情况:
  • 2000年获黑龙省科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27329