位置:成果数据库 > 期刊 > 期刊详情页
利用多级社区中心标签实现大规模图上距离查询
  • ISSN号:1005-3026
  • 期刊名称:《东北大学学报:自然科学版》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东北大学信息科学与工程学院,辽宁沈阳110819
  • 相关基金:国家自然科学基金青年基金资助项目(61303016); 辽宁省教育厅一般项目(L2012045)
中文摘要:

距离查询是图数据挖掘应用中的最基本的操作之一,但是目前的现存查询算法均无法高效处理大规模图数据.针对这个问题,提出建立多级社区中心的标签机制,即首先在原图中将结点按社区划分为多个集合,然后再将各集合中的中心结点建成带权查询子图,经过多次递归操作,最终为各结点建立一个基于社区中心的树状结构标签集,该标签集可以实现利用较短的创建时间和较小的存储代价大幅度提高距离查询的效率.从实验结果可以看出,该方法综合效率明显优于现存的高效算法.

英文摘要:

Distance querying is one of the most fundamental operations in many graph data mining applications. However, most of the previous methods cannot handle large graphs, especially those with more than a hundred thousand vertices. To solve this problem, a multilevel community center labels index structure was proposed. Firstly, the vertices of the original graph were divided into different communities. Then a weighted query sub-graph was constructed by each community center. Finally, a tree-like label set was built for every vertex. The query efficiency could be improved greatly with small time and storage cost. The experimental result showed that the overall efficiency of this approach is significantly better than those of the-state-of-the-art algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《东北大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:汪晋宽
  • 地址:沈阳.南湖
  • 邮编:110819
  • 邮箱:
  • 电话:024-83687378
  • 国际标准刊号:ISSN:1005-3026
  • 国内统一刊号:ISSN:21-1344/T
  • 邮发代号:8-120
  • 获奖情况:
  • 全国优秀科技期刊二等奖,教育部优秀高校自然科学学报一等奖二次,获原冶金部科技期刊质量评比一等奖三次,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23296