位置:成果数据库 > 期刊 > 期刊详情页
基于HBase的飞参数据存储技术
  • ISSN号:1005-3026
  • 期刊名称:《东北大学学报:自然科学版》
  • 时间:0
  • 分类:TP3[自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]沈阳航空航天大学,辽宁沈阳110136, [2]沈阳炮兵学院,辽宁沈阳110136
  • 相关基金:国家自然科学基金项目(61303016);辽宁省教育厅一般项目(L2012045).
中文摘要:

模式匹配在很多数据库相关领域中有着广泛的应用,例如数据集成、数据空间以及数据仓库。传统的匹配技术主要研究两个属性之间的匹配任务,而忽略了多个属性间的匹配任务。针对这一问题,提出一种基于DBSCAN聚类算法的多模式集成技术。该方法将关注多个属性之间语义对应关系的发现,相对于两个属性之间对应关系的发现,这将是一个更加复杂的问题。主要研究思路是将每个属性看成向量空间中的一个点,然后利用聚类技术将这些属性划分到不同的集合中,在同一个聚类中的属性具有相似的语义。同时,利用Web结构信息源来提高模式匹配结果的质量。最后,通过大量的实验来验证该方法是有效的并具有较好的性能。

英文摘要:

Schema matching has wide application in many database correlated fields, such as data integration, data space and data warehouse. Matching task between only two attributes is what the traditional matching techniques study, but the matching task between multiple attributes is ignored. With respect to this problem, we proposed a multi-schema integration technique in this paper, which is based on DBSCAN (density-based spatial clustering of applications with noise) clustering algorithm. The proposed approach focus on the discovery of semantic correspondence among multiple attributes, which is a more complex issue relative to discovering the pairwise-attribute correspondence. Our main study idea is to deem every attribute as a point in the vector space, and then to partition these attributes into different sets by clustering technique. The attributes within same cluster have similar semantics. Meanwhile, we utilised the information sources of Web structure to improve the quality of schema matching results. At last, we performed extensive experimental research to verify the approach, and the experimental results showed that our approach was effective and had good performance.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《东北大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:汪晋宽
  • 地址:沈阳.南湖
  • 邮编:110819
  • 邮箱:
  • 电话:024-83687378
  • 国际标准刊号:ISSN:1005-3026
  • 国内统一刊号:ISSN:21-1344/T
  • 邮发代号:8-120
  • 获奖情况:
  • 全国优秀科技期刊二等奖,教育部优秀高校自然科学学报一等奖二次,获原冶金部科技期刊质量评比一等奖三次,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23296