相位抖动对于相对论速调管放大器来讲是一个重要参数,同微波器件的物理过程密切联系,论文从影响器件相位抖动的物理过程出发,结合模拟程序,研究不同条件下放大器的微波相位抖动,给出影响器件微波相位抖动的物理因素.当微波器件实现稳定放大工作时,输出微波相对于注入微波的相位抖动主要由电子束束压波形的抖动和纹波引起,在一定范围内相位抖动与这种波动成线性关系.
RF phase Jitter is a very important parameter for a relativistic klystron amplifier, and it is closely related with the physical processes in the klystron. In view of the physical process in the klystron, the RF phase jitter is theoretically studied together with particle in cell (PIC) simulation. The main factor which affects the RF phase jitter is deduced and verified in the PIC simulation. The RF phase jitter is significandy affected by the fluctuation of the beam voltage at the steady state when the cavity is in resonanec. The relation is linear in a certain range.