Using the -mapping topological theory, we study the topological structure of vortex lines in a two-dimensional generalized Gross-Pitaevskii theory in (3+1)-dimensional space-time. We obtain the reduced dynamic equation in the framework of the two-dimensional Gross-Pitaevskii theory, from which a conserved dynamic quantity is derived on the stable vortex lines. Such equations can also be used to discuss Bose-Einstein condensates in heterogeneous and highly nonlinear systems. We obtain an exact dynamic equation with a topological term, which is ignored in traditional hydrodynamic equations. The explicit expression of vorticity as a function of the order parameter is derived, where the δ function indicates that the vortices can only be generated from the zero points of Φ and are quantized in terms of the Hopf indices and Brouwer degrees. The -mapping topological current theory also provides a reasonable way to study the bifurcation theory of vortex lines in the two-dimensional Gross-Pitaevskii theory.
Using the C-mapping topological theory, we study the topological structure of vortex lines in a two-dimensional generalized Gross Pitaevskii theory in (3+l)-dimensional space-time. We obtain the reduced dynamic equation in the framework of the two-dimensional Gross-Pitaevskii theory, from which a conserved dynamic quantity is derived on the stable vortex lines. Such equations can also be used to discuss Bose-Einstein condensates in heterogeneous and highly nonlinear systems. We obtain an exact dynamic equation with a topological term, which is ignored in traditional hydrodynamic equations. The explicit expression of vorticity as a function of the order parameter is derived, where the function indicates that the vortices can only be generated from the zero points of Ф and are quantized in terms of the Hopf indices and Brouwer degrees. The C-mapping topological current theory also provides a reasonable way to study the bifurcation theory of vortex lines in the two-dimensional Gross-Pitaevskii theory.