位置:成果数据库 > 期刊 > 期刊详情页
一种基于知识粒度的启发式属性约简算法
  • ISSN号:1002-8331
  • 期刊名称:计算机工程与应用
  • 时间:2012.12.1
  • 页码:31-33
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]南京财经大学信息工程学院,南京210046, [2]南京邮电大学自动化学院,南京210046
  • 相关基金:国家自然科学基金(No.61105082);江苏省自然科学基金(No.BK2012470);江苏省教育厅高校自然科学基金基础研究项目(No.11KJB120001,No.09KJB120001);南京财经大学科研基金项目资助(No.A2010029).
  • 相关项目:基于粗糙粒计算的非解析逆系统模型辨识及控制方法研究
中文摘要:

属性约简是粗糙集理论进行知识获取的核心问题之一。根据属性相似度与知识粒度的一致性,通过条件属性与决策属性以及条件属性之间的相似度度量,提出了一种基于知识粒度的启发式属性约简算法。根据条件属性与决策属性的相似度对条件属性进行降序排列,根据条件属性之间的相似度度量选择重要的属性,从而得到约简集合。理论分析与实验结果表明,该算法具有较高的运行效率和较好的约简效果。

英文摘要:

Attribute reduction is very important to knowledge acquisition in rough set theory. According to the consistency of attribute similarity and knowledge granularity, a new algorithm for attribute reduction based on knowledge granularity is proposed by calculating the similarity between condition attributes and decision attributes, as well as the similarity between condition attributes. The condition attributes are ordered descendingly based on the similarity between condition attributes and decision attributes, and the reduction set is obtained by selecting the important attributes based on the similarity between condition attributes. Theory analysis and the experiment results show that this algorithm reduces the calculation complexity and improves reduction effect.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887