位置:成果数据库 > 期刊 > 期刊详情页
空间约束混合高斯运动目标检测
  • ISSN号:1006-8961
  • 期刊名称:《中国图象图形学报》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南昌航空大学信息工程学院,南昌330063, [2]江西省图像处理与模式识别重点实验室,南昌330063
  • 相关基金:国家自然科学基金项目(61402218,61272077);江西省自然科学基金项目(20142BAB217013);江西省教育厅青年自然科学基金项目(GJJ14540);江西省图像处理与模式识别重点实验室开放基金项目(TX201304002)
中文摘要:

目的针对传统混合高斯模型前景检测运算量过大问题,提出一种基于空间约束的混合高斯前景检测算法。方法通过快速初始化缩短模型的初始建立过程;采用双重背景模型机制,以自适应背景减法的前景检测结果作为混合高斯前景检测的空间约束条件,降低模型在背景区域的冗余运算;运用多策略自适应模型更新,提高前景检测的准确性。结果在各种测试场景下,与传统}昆合高斯法、CodeBook、GMG、偏差均值混合高斯模型(MODG—MM)等算法相比,该算法具有更好的准确率以及4倍以上的处理速度。结论在固定相机场景下的运动目标检测中,算法能有效提高传统混合高斯法的准确性且具有极高的实时性。

英文摘要:

Objective Aiming at reducing the high computation cost of the classic Gaussian mixture model ( GMM), we propose a GMM with spatial constraint (SCGMM). The main reason for the high computation cost of the GMM is that all pixel models are computed at every frame, and a large part of the computation is useless for GMM. Thus, the SCGMM focuses on reducing the number of models involved in the computation of the GMM. Method For the three parts of the GMM, three methods are utilized to reduce the computation cost of the GMM. In the initial part of the GMM, a method of fast initializa- tion is utilized to shorten the process of initial modeling. The initialization of the GMM requires a large amount of statistical information from all the pixel points. Each pixel should be involved in all operations and the computation cost for one frame used in the initial part cannot be obviously reduced. For this reason, a simple adaptive learning rate is applied to reduce the number of frames required in the initial part of the GMM. In the moving object detection part of the GMM, a double background model is adopted. The detection results for moving objects of the first adaptive background model are used as the spatial constraint condition of the GMM to reduce the redundant computation of the GMM at the region without moving objects. The moving object detection method of the GMM is also used at the region that may contain moving objects to maintain the accuracy of the GMM. Therefore, the advantages of the SCGMM in the moving object detection part is that the SCGMM reduces the number of pixels involved in the computation of the GMM and maintains the accuracy of the GMM. In the parameter update part, multi-strategy adaptive model updating is adopted. The final result of the moving object detec- tion part is used as the spatial constraint condition to reduce the quantity of pixels involved in parameter update. Adaptive learning rate and periodic global update are applied to improve the accuracy of moving object detection. By usin

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数码影像》
  • 主管单位:
  • 主办单位:中国图象图形学学会 中科院遥感所 北京应用物理与计算数学研究所
  • 主编:
  • 地址:北京市海淀区花园路6号
  • 邮编:100088
  • 邮箱:
  • 电话:010-86211360 62378784
  • 国际标准刊号:ISSN:1006-8961
  • 国内统一刊号:ISSN:11-3758/TB
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:0