地球作为 triaxial 被花僵硬身体,它在欧几里得的空格自由地旋转。开始的方程是 Euler 动态方程,与比比 C 的 B 和 esmaller 小的 A。Euler 方程被解决,并且数字结果被提供。在计算,下列参数被使用:(C~B )/A=0.003 273 53;(B-A )/C=0.000 021 96;(C-A )/e=0.003 295 49,并且地球的旋转的吝啬的尖速度, co =0.000 072 921 15rad/s。计算证明除地球和它的旋转的免费 Euler 行列的自我旋转以外,那在那里存在免费点头:在 theEarth 的片刻的旋转轴和周期性地随着时间变化的吝啬的轴之间的点头角度,或角度。免费点头被调查。
The Earth is taken as a triaxial rigid body, which rotates freely in the Euclidian space. The starting equations are the Euler dynamic equations, with A smaller than B and B smaller than C. The Euler equations are solved, and the numerical results are provided. In the calculations, the following parameters are used: (C-B)/A=0.003 273 53; (B-A)/C=0.000 021 96; (C-A)/B=0.003 295 49, and the mean angular velocity of the Earth's rotation, ω =0.000 072 921 15 rad/s. Calculations show that, besides the self-rotation of the Earth and the free Euler procession of its rotation, there exists the free nutation: the nutation angle, or the angle between the Earth's momentary rotation axis and the mean axis that periodically change with time. The free nutation is investigated.