Evaluation of Particle Numbers via Two Root Mean Square Radii in a 2-Species Bose-Einstein Condensate
- ISSN号:0253-6102
- 期刊名称:《理论物理通讯:英文版》
- 时间:0
- 分类:O412[理学—理论物理;理学—物理] O571.2[理学—粒子物理与原子核物理;理学—物理]
- 作者机构:[1]State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China, [2]Departlnent of Physics, Shaoguan University, Shaoguan 512005, China, [3]State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- 相关基金:Supported by tile National Natural Science Foundation of China under Grant Nos. 11372122, 11274393, 11574404, and 11275279; the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China; and the National Basic Research Program of China (2013CB933601); and Guangdong Natural Science Foundation (2016A03(1313313)
关键词:
玻色爱因斯坦凝聚体, 均方根半径, GROSS-PITAEVSKII方程, 粒子数, 评价, 反式脂肪酸, 各向同性, TFA, Bose-Einstein condensation, 2-species BEC, root mean square radius, determination of particlenulnbers
中文摘要:
为二种类的 BEC 的联合 Gross-Pitaevskii 方程被解决了在 Thomas 费密近似(TFA ) 下面的经分解。基于分析溶液,二个公式被导出联系粒子数字 N 和 N 有二种原子的根平均数平方半径的 B 。仅仅两种原子有的盒子在一个各向同性的陷井的中心的非零分发被考虑。在这种情况中, TFA 被发现了漂亮地工作。因此,二个公式是适用的并且为 N 和 N B 。
英文摘要:
The coupled Gross Pitaevskii equations for two-species BEC have been solved analytically under the Thomas-Fermi approximation (TFA). Based on the analytical solution, two formulae are derived to relate the particle numbers NA and NB with the root mean square radii of the two kinds of atoms. Only the case that both kinds of atoms have nonzero distribution at the center of an isotropic trap is considered. In this case the TFA has been found to work nicely. Thus, the two formulae are applicable and are useful for the evaluation of NA and NB.