单调变化不平等Ⅵ(Ω, F ) 有广阔应用程序,包括最佳的控制和凸的编程。在我们在Ⅵ上集中的这篇论文,有详细规格切开的问题组织并且在哪个印射的 F 没有一种明确的形式,因此,它的仅仅功能价值能为解决如此的问题在数字方法被采用。我们学习是的一套数字方法容易工具能。建议方法的每次重复由二个过程组成。(预言) 首先,过程利用轮流出现的设计生产一个预言者。第二(修正) 过程产生新经由一些次要的计算重申。建议方法的集中在温和条件下面被证明。为一些交通平衡问题的初步的数字实验说明建议方法的有效性。
The monotone variational inequalities VI(Ω, F) have vast applications, including optimal controls and convex programming. In this paper we focus on the VI problems that have a particular splitting structure and in which the mapping F does not have an explicit form, therefore only its function values can be employed in the numerical methods for solving such problems. We study a set of numerical methods that are easily implementable. Each iteration of the proposed methods consists of two procedures. The first (prediction) procedure utilizes alternating projections to produce a predictor. The second (correction) procedure generates the new iterate via some minor computations. Convergence of the proposed methods is proved under mild conditions. Preliminary numerical experiments for some traffic equilibrium problems illustrate the effectiveness of the proposed methods.