为了解决非线性的补充问题(NCP ) ,在每次重复,当时,古典近似的点算法解决调节得好的 sub-NCP 对数 -- 二次近似(LQP ) 方法解决非线性的方程(LQP 系统) 的一个系统。这份报纸论述实际 LQP 为 NCP 的基于方法的预言修正方法。预言者经由在显著地放松的限制下面近似解决 LQP 系统被获得,并且新重申(修正者) 被从原来的 LQP 方法导出的一个明确的公式直接计算。实现是很容易的被执行。方法的全球集中在象原来的 LQP 方法的一样的温和假设下面被证明。最后,交通平衡问题的数字结果被提供证实方法为一些实际问题是有效的。[从作者抽象]
To solve nonlinear complementarity problems (NCP), at each iteration, the classical proximal point algorithm solves a well-conditioned sub-NCP while the Logarithmic-Quadratic Proximal (LQP) method solves a system of nonlinear equations (LQP system). This paper presents a practical LQP method-based prediction-correction method for NCP. The predictor is obtained via solving the LQP system approximately under significantly relaxed restriction, and the new iterate (the corrector) is computed directly by an explicit formula derived from the original LQP method. The implementations are very easy to be carried out. Global convergence of the method is proved under the same mild assumptions as the original LQP method. Finally, numerical results for traffic equilibrium problems are provided to verify that the method is effective for some practical problems.