蛋白质复合物在生物生命活动中扮演着重要作用,基于蛋白质互作用(PPI,Protein-Protein Interaction)网络进行复合物检测是当前的一个研究热点.针对此,提出了一种基于层次图聚类的蛋白质复合物检测算法,其中结合网络拓扑结构和蛋白质复合物信息,给出一种网络结点的权重定义方式;边在蛋白质互作用网络的拓扑属性与层次图聚类算法相结合,提出了一种基于层次图聚类算法的蛋白质复合体识别算法HGCD(Hierarchy Graph Clustering based method for Protein Complexes Discovery).在Utez酿酒酵母PPI网络中进行蛋白质复合物识别结果表明,HGCD算法可以发现网络中的蛋白质复合体.
Protein complexes play important role in biological life cycle,and the complex detection based on protein interaction( PPI) network is a hot research topic at present. In this paper,a protein complex detection algorithm based on hierarchical graph clustering is proposed,among combining network topology and protein complex information,a weight definition method of network nodes is given. Combined with the topology of the edge in PPI network and hierarchical graph clustering algorithm,a protein complex hierarchical graph recognition algorithm( Hierarchy Graph Clustering based method for Protein Complexes Discovery,HGCD) based on clustering algorithm is presented. The experimental results on Saccharomyces Cerevisiae showed that the proposed HGCD presented a considerable or better performance.