位置:成果数据库 > 期刊 > 期刊详情页
一种高斯区间核SVM分类模型
  • ISSN号:1004-9037
  • 期刊名称:《数据采集与处理》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]山西大学计算机与信息技术学院,太原030006, [2]山西大学计算智能与中文信息处理教育部重点实验室,太原030006
  • 相关基金:国家自然科学基金(61673249,61503229,61273291)资助项目; 山西省回国留学人员科研项目(2016-004)资助项目; 山西省自然科学青年基金(2015021096)资助项目; 山西省高等学校科技创新(2015110)资助项目
中文摘要:

区间型数据(Interval data,ID)是属性特征取值为区间的一类数据,针对区间型数据的分类问题,本文提出一种高斯区间核支持向量机分类模型(Support vector machine based on Gauss interval kernel,GIK_SVM)。该方法引入半宽因子,在区间型数据的中值与半宽度之间进行折中,并据此构造高斯区间核用以衡量两个区间型数据间的相似性,然后用SVM模型进行分类。在人造数据集和真实数据集上的实验结果表明,本文提出的算法对区间数据有更好的分类性能。

英文摘要:

Interval data(ID)is a kind of data which the attribute values are the interval.Aiming at the classification problem of interval data,a support vector machine classification model based on Gauss interval kernel(GIK_SVM)is proposed.In the method,the half-width factor is introduced which makes a compromise between the median and the half width of interval data.Then,the Gauss interval kernel is constructed to measure the similarity between two interval data.SVM model is applied to classify the samples.Experiment results on artificial and real datasets demonstrate that the proposed GIK_SVM has a better classification performance for interval data.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数据采集与处理》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会 仪器仪表学会 信号处理学会 中国一汽仪表学会 中国物理学会 微弱信号检测学会 南京航空航天大学
  • 主编:贲德
  • 地址:南京市御道街29号
  • 邮编:210016
  • 邮箱:sjcj@nuaa.edu.cn
  • 电话:025-84892742
  • 国际标准刊号:ISSN:1004-9037
  • 国内统一刊号:ISSN:32-1367/TN
  • 邮发代号:28-235
  • 获奖情况:
  • 中国科技论文统计源用刊,2007年被评为江苏省优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:8148