位置:成果数据库 > 期刊 > 期刊详情页
基于等价类规则树的高效关联规则挖掘算法
  • ISSN号:1000-386X
  • 期刊名称:《计算机应用与软件》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东莞理工学院科研处,广东东莞523808
  • 相关基金:国家自然科学基金项目(11201067); 广东省教育科学“十二五”规则课题(2012JK304)
作者: 刘晓蔚[1]
中文摘要:

传统的类关联规则挖掘方法在挖掘完整的规则数据集时往往需要消耗很长的时间。为了解决这个问题,提出一种高效的基于等价类规则树的类关联规则挖掘算法。首先,通过分析等价类规则树挖掘类关联规则算法存在的耗时问题,设计一个树结构存储数据集的频繁项集;接着,基于这棵树推导出一些修正树上节点和减少节点信息计算量的定理;最后,利用这些定理得到一个有效的适用于挖掘类关联规则的算法。实验结果表明,与其他较为先进的基于等价类规则树的关联规则挖掘算法相比,所提算法更加高效。

英文摘要:

Traditional class-association rules (CAR) mining methods usually need long time to mine a complete rule dataset. To address this issue, we propose an efficient CAR mining algorithm which is based on equivalence class-rules tree. First, by analysing the time consuming problem of equivalence class-rules tree in mining CAR algorithm, we design a frequent item sets for the storage datasets with tree structure. Then based on this tree we derive some theorems for pruning the nodes of the tree and decreasing node information computation load. At last, based on these theorems we obtain an effective algorithm suitable for mining the CAR. Experimental results indicate that the algorithm proposed is more efficient than other association rule mining algorithms based on equivalence class-rules tree.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用与软件》
  • 北大核心期刊(2011版)
  • 主管单位:上海科学院
  • 主办单位:上海市计算技术研究所 上海计算机软件技术开发中心
  • 主编:朱三元
  • 地址:上海市愚园路546号
  • 邮编:200040
  • 邮箱:cas@sict.stc.sh.cn
  • 电话:021-62254715 62520070-505
  • 国际标准刊号:ISSN:1000-386X
  • 国内统一刊号:ISSN:31-1260/TP
  • 邮发代号:4-379
  • 获奖情况:
  • 全国计算机类中文核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2011版),中国北大核心期刊(2000版)
  • 被引量:27463