在这个工作, FePt-Au heterostructured nanocrystals (HNC ) 象蝌蚪那样 -- ,哑铃 -- ,祷告 -- ,并且像项链的 nanostructures 被 Au NC 的灵巧的 heteroepitaxial 生长综合到 FePt nanorods (NR ) 上。生长机制的研究表明最后的产品的形态学控制能与氢的吸附地点被相关到 FePt NR 上,它能被增加的形成的气体(Ar/7% H2 ) 的数量操作。内在的材料的不仅光特征和磁性在产品被保留,而且 FePt-Au HNC 证明悦耳的多功能的性质源于在 Au 和 FePt 之间的相互作用。而且为甲醇氧化, FePt-Au HNC 与商业磅催化剂相比在催化剂表面上展出了提高的催化活动和公司忍耐。作为多功能的单位, FePt-Au HNC 也拥有异构的表面,是值得注意的,它能潜在地为在生物医学的应用指向或成像目的启用他们的地点特定的 functionalization。更有趣地, FePt-Au HNC 的催化性质也在 nanocatalysis 赋予这材料以申请潜力。
In this work FePt-Au heterostructured nanocrystals (HNCs) such as tadpole-, dumbbell-, bead-, and necklace-like nanostructures were synthesized by a facile heteroepitaxial growth of Au NCs onto FePt nanorods (NRs). A study of the growth mechanism revealed that the morphology control of the final products can be correlated with the adsorption sites of hydrogen onto the FePt NRs, which can be manipulated by the amount of the forming gas (At/7% H2) added. Not only the optical characteristic and magnetic properties of the intrinsic materials were retained in the products, but also the FePt-Au HNCs showed the tunable multifunctional properties resulted from the interactions between Au and FePt. Moreover, for methanol oxidation, the FePt-Au HNCs exhibited enhanced catalytic activity and CO tolerance on the catalyst surface compared to commercial Pt catalysts. It is worth noting that as multifunctional units, the FePt-Au HNCs also possess a heterogeneous surface, which could potentially enable their site-specific functionalization for targeting or imaging purposes in biomedical applications. More interestingly, the catalytic properties of the FePt-Au HNCs also endow this material with application potentials in nanocatalysis.