在 ultracold 温度的原子 Bose 爱因斯坦冷凝作用的试验性的实现在创造并且操作冷分子导致了快速的进展,并且它生产了量事波浪 superchemistry 的一个新研究领域。与古典 Arrhenius 法律相反,通道主导的 ultracold 反应能通过高度控制的磁电机光的技术被认识到。新奇的量效果在这些冷反应被识别了,例如在分裂的超级选择的规则由三个原子而成的分子,和量尺寸(容器形状) 效果。在这评论,我们在这个迷人的事波浪仙境集中于许多新成就,包括在装配冷分子,在触发集体抽象反应的量噪音,和磁性的阶段的有限数字的效果和双裂缝干扰在催化激光的量转移的量混合纺纱的气体。事波浪 superchemistry 的实际应用也被介绍,例如经由量相片协会,和旋量或甚至 chiral 分子的提高激光的创造的光信息存储。
The experimental realization of atomic Bose-Einstein condensation at ultracold temperature has led to rapid advances in creating and manipulating cold molecules, and which has given birth to a new research field of quantum matter-wave superchemistry. Contrary to the classical Arrhenius law, the tunnelingdominated ultracold reactions can be realized through the highly-controlled magneto-optical technique. Novel quantum effects have been identified in these cold reactions, such as the super-selectivity rule in dissociating triatomic molecules, and the quantum size (vessel-shape) effect. In this review, we focus on a variety of new achievements in this fascinating matter-wave wonderland, including the quantum finitenumber effect and double-slit interference in assembling cold molecules, the quantum noise in triggering collective abstraction reaction, and the magnetic phase transition in a laser-catalyzed quantum spin-mixing gas. The practical applications of matter-wave superchemistry are also introduced, such as the optical information storage via quantum photo-association, and the laser-enhanced creation of spinor or even chiral molecules.