大规模隐式反馈数据的使用是推荐系统中的研究热点和难点问题。针对隐式反馈数据高噪声和缺少负反馈的特点,以音乐推荐为背景,在研究概率矩阵分解模型(PMF)的基础上提出了一种直接优化排名倒数(RR)的概率矩阵分解模型(RR-PMF)。通过与User-based KNN算法相结合提出了RR-UBPMF算法,并利用交叉最小二乘法(ALS)进行优化学习。在last.fm数据集上的实验结果表明,该算法在准确率(Precision)、尤其是在标准化折算累加值(NDCG)等评价指标上表现出极大的优势,能够明显提高预测准确性,并且具有良好的可拓展性。