位置:成果数据库 > 期刊 > 期刊详情页
基于贝叶斯混合集成的概念漂移数据流分类
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]辽宁师范大学计算机与信息技术学院,辽宁大连116081
  • 相关基金:国家自然科学基金项目(10771092);辽宁省教育厅基金项目(L2011186)
作者: 杨彬彬[1]
中文摘要:

为有效解决概念漂移数据流分类问题,提出一种基于混合集成学习的概念漂移数据流分类方法。考虑数据分布特性与概念漂移速率这两个因素,将概念漂移的成因考虑到模型的构建中。采用混合集成学习框架,根据贝叶斯分类错误率来检测概念漂移,通过动态调整滑动窗口,实现不同类型概念漂移的自动识别。实验结果表明,对于不同类型概念漂移数据流的识别问题,该算法在抗噪和漂移检测方面均表现出良好的性能。

英文摘要:

To solve the concept drift data stream classification problem effectively ,a new method based on hybrid integrated learning was proposed .This method focuses on the concept of data distribution characteristics and the drift rate ,and takes the causes of concept drift into account .A hybrid integrated learning framework was adopted ,the concept drift was detected based on Bayesian classification error rate ,and different types of concept drift were automatically identified through dynamic adjustment on the sliding window .Experimental results show that the proposed method has the better performance on concept drift data stream identification problem in both the noise and the drift tests .

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616