基于景观生态学理论,借助多时相遥感数据与GIS空间分析技术,运用“压力-状态-响应(pressstate-response,PSR)”模型,构建岩溶地区城市景观生态安全评价体系,通过空间叠加分析得到2000年和2013年贵阳市城市生态安全等级分布图,并就其空间分布规律与演化特征进行了对比分析,结果表明:2000年、2013年贵阳市城市生态安全指数均较低,2000年处于安全级别以上的值为3.04,2013年处于安全级别以上的值下降到1.78,在空间分布上呈西南向东北递增的趋势;在2000-2013年间,景观生态安全指数除湿地以外其他景观类型均呈现明显的下降趋势,其中农田恶化较为明显,湿地是唯一改善的景观类型。研究时段内贵阳市景观生态安全状况处于恶化趋势,因而建议在今后的城市规划与建设中应优化土地利用格局,以提高城市景观生态安全水平。
Accelerated urbanization and high-intensity exploitation of resources have brought serious impact on the natural ecosystem and the quality of urbanization. Previous studies on this issue focus on grasslands, watersheds, wetlands, and mountains, while the ecological vulnerable karst regions receive little attention. At the same time, the selected indicators are based on statistical data which ignore the spatial differentiation characteristics, which is not favorable to regional comparative studies rand lacks visualization effects. Guiy- ang, the capital city of Guizhou Province, located in a typical karst region, is an ideal area for this research, because ecological environments, rocky desertification and severe degradation characterize in this city. Be- sides, the city lacks arable land and has high population pressure and extensive pattern of economic develop- ment, forcing the urbanization process to accelerate and in turn increase the urban ecological security threat. This study is based on the theory of landscape ecology, using the "pressure-state-response (PSR)" model to build an urban landscape ecological security evaluation system of karst areas. The evaluation indexes include population pressure, urban sprawl, vegetation fractional coverage, the degree of rocky desertification, habi- tat quality index, urban heat-island effect and natural hazards. By comparing and analyzing the spatial distri bution and evolution characteristics using multi-temporal of remote sensing data and GIS technology, this work obtains urban ecological security levels distribution in 2000 and 2013 for Guiyang City. The results show that the ecological security index of Guiyang City was relatively low in 2000 and 2013, with 3.04 more than the level of security in 2000 and 1.78 in 2013. In terms of spatial distribution, the security index tended to increase from southwest to northeast . The variation map of urban ecological security between 2000 to 2013 is obtained via superposition analysis by ArcGIS, in which the