位置:成果数据库 > 期刊 > 期刊详情页
基于子带频谱质心特征的高效音频指纹检索
  • ISSN号:1000-0054
  • 期刊名称:《清华大学学报:自然科学版》
  • 时间:0
  • 分类:TN912.3[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:清华大学电子工程系,北京100084
  • 相关基金:国家自然科学基金资助项目(61105017)
中文摘要:

关键音频检测是指从音频库中检索出查询样例,是音频检索的一种重要形式。该文针对传统关键音频检测方法在效率和鲁棒性上的不足分别在预处理、指纹提取以及检索部分进行了优化。在预处理阶段采用基于子带能量比的语音端点检测算法,并在窗函数选择和子带划分方法上进行了改善;在指纹提取阶段采用种子片段选取的方法,并将指纹提取方法改进为子带频谱质心法;在检索阶段通过设定命中次数门限以提高效率。实验结果表明:该文提出的改进系统在查全率、查准率以及抗噪能力提升的同时提高了检索效率,有效地提升了检索性能。

英文摘要:

Key audio detection, an important form of audio retrieval, uses a query audio sample to search in an audio database but such searches are not very efficient or robust. This paper optimizes the pre-proeessing, fingerprint extraction and retrieval of the audio retrieval. The pre-proeessing uses endpoint detection based on the sub-band energy ratio with a modified window function and measurements of the sub-hand divisions. The fingerprint extraction uses seed fragments and spectral sub-band centroids. The retrieval part uses a threshold for the hit counts to improve the efficiency. This system improves the precision and reduces the recall rate with good noise suppression. The retrieval efficiency and performance are effectively improved.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《清华大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:清华大学
  • 主编:梁恩忠
  • 地址:北京市海淀区清华大学学研大厦B座908
  • 邮编:100084
  • 邮箱:xuebaost@tsinghua.edn.cn
  • 电话:010-62788108 62792976
  • 国际标准刊号:ISSN:1000-0054
  • 国内统一刊号:ISSN:11-2223/N
  • 邮发代号:2-90
  • 获奖情况:
  • 国家期刊奖,国家“双高”期刊,1992年以来,历次国家级和省部级一等奖,第一、二届全国优秀科技期刊一等奖,教育部优秀期...,第三届中国出版政府奖提名奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,美国应用力学评论,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:43470