孤立子的高度稳定性和粒子性引起了人们对孤立子的极大兴趣,并且在流体物理、固体物理、等离子体物理和光学实验中频频被发现,很多非线性发展方程都存在孤立子解。本文在符号计算的帮助下,利用一个广义的双曲函数方法,得到(2+1)维变系数Nizhnik-Novikov-Veselov方程的新的更广义类型的孤子解,此方法还可被应用到其它非线性发展方程中去。
High stability and particle properties of solitons have aroused great interest in solitary,and are frequently found in the fluid physics,solid state physics,plasma physics and optical experiment.Many nonlinear evolution equations have soliton solution.With the help of symbolic computation,new kinds of generallzed soliton solution for the(2+1)-dimensional Nizhnik-Novikov-Veselov equation with variable coefficients are obtained by using ageneralized hyperbolic-function method.This approach can slso be applied to other nonlinear evolution equations.