位置:成果数据库 > 期刊 > 期刊详情页
基于变增益迭代学习算法的多元间歇精馏控制
  • ISSN号:0438-0479
  • 期刊名称:厦门大学学报(自然科学版)
  • 时间:2012.5
  • 页码:336-341
  • 分类:TP273.5[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]厦门大学化学化工学院,福建厦门361005
  • 相关基金:国家自然科学基金项目(61174093)
  • 相关项目:针对复杂批次过程的2维自校正模型预测控制理论与应用研究
中文摘要:

面对多元间歇精馏过程的多阶段操作和非稳态运行特点以及高稳定性和高精度的控制需求,传统的反馈控制一般难以确定最优的回流比操作方案.针对该问题,在传统P(比例)型迭代学习控制(iterative learning control,ILC)算法的基础上,提出了一种学习增益沿批次指标自适应调整的变增益P型ILC算法.该算法能够保证间歇精馏过程在不同的操作时刻沿批次指标具有平衡的学习效率,从而提高过程控制性能沿批次指标的收敛速度.以Aspen Batch Distillation(ABD)软件系统中的一个三元间歇精馏模型为实际控制对象,对所提出的变增益P型ILC和传统PID控制以及P型ILC 3种控制方案进行了控制性能的仿真和比较,仿真结果证明了该控制算法不仅计算简单,同时比传统P型ILC算法具有更快的收敛速度.

英文摘要:

Due to the multi-stage operation and unstable dynamics in the multi-component batch distillations,traditional feedback control schemes may not ensure the optimal operation.Based on the traditional P-type iterative learning control(ILC) scheme,a new P-type ILC algorithm with adaptive learning rate is proposed in this paper to balance the learning effectiveness over the time-varying operational conditions and then improve the convergence rate of the ILC performance from batch to batch.In order to compare the control performances of the proposed control algorithm,traditional PID control and P-type ILC algorithm,the numerical simulates of the control schemes are implemented on an Aspen Batch Distillation(ABD) process model.The simulation results illustrate that the proposed varying-gain ILC algorithm is simple for implementation and can provide a faster convergence of the control performance along the batch index than traditional P-type ILC scheme.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《厦门大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:厦门大学
  • 主编:谢素原
  • 地址:厦门市思明南路422号厦门大学嘉庚三 817-819室
  • 邮编:361005
  • 邮箱:jxmu@xmu.edu.cn
  • 电话:0592-2180367 2187731
  • 国际标准刊号:ISSN:0438-0479
  • 国内统一刊号:ISSN:35-1070/N
  • 邮发代号:34-8
  • 获奖情况:
  • 多次被评为全国、华东地区、福建省的优秀科技期刊,2001年入选国家新闻出版总署评定的"中国期刊方阵",2003年获国家新闻出版总署颁发的"第二届国家科技...,2006年获国家教育部科技司颁发的"首届中国高校精...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,美国生物科学数据库,英国科学文摘数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:16575