位置:成果数据库 > 期刊 > 期刊详情页
优化加权TV的复合正则化压缩感知图像重建
  • ISSN号:1006-8961
  • 期刊名称:中国图象图形学报
  • 时间:2014.2.16
  • 页码:211-218
  • 分类:TP319[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学计算机科学与工程学院,南京210094, [2]南京理工大学理学院,南京210094
  • 相关基金:国家自然科学基金项目(61071146,61171165);江苏省自然科学基金项目(BK2010488);南京理工大学研究资助项目(2010ZDJH07);高等学校博士学科点专项科研基金项目(20123219120043)
  • 相关项目:结合时空统计学习的视频超分辨自适应稀疏正则化理论与算法
中文摘要:

目的 压缩感知理论突破了传统的Shanon-Nyquist采样定理的限制,能够以较少的采样值来进行原信号的恢复.针对压缩感知图像重建问题,提出一种基于优化加权全变差(TV)的复合正则化压缩感知图像重建模型.方法 提出的重建模型是以TV正则化模型为基础.首先,为克服传统TV正则化会导致重建图像的边缘和纹理细节部分模糊或丢失的缺点,引入图像的梯度信息估计权重,构建加权TV的重建模型.其次,利用全变差去噪(ROF)模型对权重进行优化估计,从而减少计算权重时受噪声的影响.再次,将非局部结构相似性先验和局部自回归性先验引入提出的加权TV模型,得到优化加权TV的复合正则化重建模型.最后,结合投影法和算子分裂法对优化模型求解.结果 针对自然图像的不同特性,使用复合正则化先验进行建模,实验结果表明上述重建问题通过本文方法得到了很好的解决,加权TV正则化先验使得图像的平坦区域和强边重建较好,而非局部结构相似性先验和局部自回归性先验能够保证图像的精细结构部分的重建效果.结论 与其他基于TV正则化的重建模型相比,本文模型的重建性能无论是在视觉效果还是在客观评价指标上都有明显的提高.

英文摘要:

Objective Breaking the limitations of the traditional Shanon-Nyquist sampling theorem, compressed sensing is a recent paradigm, which allows a signal to be sampled at sub-Nyquist rates and proposed a methodology of recovery that in- curs no loss. The field of compressed sensing is related to other topics in signal processing. Especially, imaging techniques having a strong affinity with compressed sensing include coded aperture and computational photography. In recent years, compressed sensing image reconstruction has caused widespread concern, and the total variation ( TV ) regularization, which describes the sparsity of the image gradient, has been widely used for image reconstruction. Inspired by these ideas, we propose a novel compound regularized compressed sensing image reconstruction model based on optimal reweighted TV. Method Our reconstruction modeling is based on the classical TV regularization recovery model, and some actions have been taken to improve the reconstruction performance. At first, the TV regularization always results in a piecewise constant solutions. This will make the reconstructed image too smooth and some details, such as edges and textures, are lost. To overcome this drawback, the gradient information of the image is utilized to estimate weights, and build a reweighted TV-based compressed sensing image reconstruction model. Then, for reducing the noise or other degradation influence, we in- troduce a TV denoising (Rudin-Osher-Fatemi, ROF) model into the optimal estimation of weights. Next, the characters of the natural image are introduced into image modeling as the priors such as the nonlocal structure similarity and local re- gression priors. We introduce these priors into the reconstruction model to preserve the image details, and propose a novel compound regularized optimization model based on optimal reweighted TV. At last, the optimization model could be re- duced to a series of convex minimization problems that can be efficiently solved with a combination of the project

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数码影像》
  • 主管单位:
  • 主办单位:中国图象图形学学会 中科院遥感所 北京应用物理与计算数学研究所
  • 主编:
  • 地址:北京市海淀区花园路6号
  • 邮编:100088
  • 邮箱:
  • 电话:010-86211360 62378784
  • 国际标准刊号:ISSN:1006-8961
  • 国内统一刊号:ISSN:11-3758/TB
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:0