非局部均值利用图像自相似性,有效保持了图像的几何结构信息.提出了非局部patch正则和TV正则结合的图像恢复模型,利用改进的结构张量矩阵构造自适应非局部权函数,根据像素的局部结构计算图像中patch的相似性,提高了图像结构信息的保持性能.在数值解法上,采用分裂Bregman算法迭代求解模型,得到简单快速的迭代形式.数值实验证明所提出方法在提高恢复图像质量和算法效率上都有显著改进.
Nonlocal means exploits the spatial correlation in an image,and preserves the structure information effectively.Combining the nonlocal patch regularization with TV regularization,we propose a nonlocal patch regularized image restoration model.The improved structure tensor matrix can be used to achieve a data-adaptive weigh function,which can then adjust the similarity match process based on the local structure of a pixel.A more simple and effective algorithm-Split Bregman,is used to solve the model iteratively.Compared with other regularization models,our method performs better in improving the quality of restoration image and the efficiency of the algorithm.