图G的拉普拉斯矩阵的第二小特征值称为图G的代数连通度.在给定团数w的n阶连通图中,本文刻画了具有最小代数连通度的图为风筝图PKn-w,w,其中风筝图PKn-w,w是由完全图Kw在某一点上引出一条悬挂路Pn-w而得到的图.同时,对风筝图PKn-w,w,的代数连通度的一些性质也做了讨论.
The algebraic connectivity of a graph G is the second smallest eigenvalue of its Laplacian matrix. In this paper, it is shown that among all connected graphs with the clique number w, the minimum value of the algebraic connectivity is attained for a kite graph PKn-w,w, obtained by appending a complete graph Kw to an end vertex of a path Pn-w. Moreover, some properties for PKn-w,w are discussed.