位置:成果数据库 > 期刊 > 期刊详情页
基于扩展卡尔曼神经网络算法估计电池SOC
  • ISSN号:0258-7998
  • 期刊名称:《电子技术应用》
  • 时间:0
  • 分类:TM92[电气工程—电力电子与电力传动]
  • 作者机构:[1]沈阳建筑大学信息与控制工程学院,辽宁沈阳110000, [2]中国科学院沈阳自动化研究所,辽宁沈阳110000, [3]中国电子技术标准化研究院,北京100007
  • 相关基金:国家重大科技专项项目(2011ZX02601-005);校涵育项目(XKHY2-61)
中文摘要:

针对汽车锂电池的荷电状态(SOC)的问题,基于Thevenin电路为等效电路并且应用扩展卡尔曼算法(EKF)结合神经网络算法进行估计。在进行卡尔曼滤波算法估算过程中,需要用到实时的估算模型参数值(最新值),即在不同的SOC下模型的参数不同。传统做法是把SOC与各个参数的关系进行普通的拟合,这种方法在拟合过程中存在较大误差。为了解决这个问题,利用神经网络拟合各个电路模型参数与SOC关系曲线。试验结果表明,与单纯的扩展卡尔曼算法相比,该方法能够准确估计电池剩余电量,误差小于3%。

英文摘要:

An extended Kalman filter algorithm(EKF) with neural network is used to estimate the state of lithium battery(SOC),which is based on Thevenin equivalent circuit.In the process of extended Kalman filter estimation,the real-time model parameters should be updated with the different SOC regard to the different SOC the different model parameters.The traditional approach which has a big error is that the fitting curve between SOC and the various separate parameters is common.To solve this problem neural net-work is applied to fit curve between the parameters of circuit model and the SOC separately.Finally,the results with the error less than 3 % show that compared with the pure extended Kalman algorithm,the method can realize the more accurate estimation of the remaining battery power.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子技术应用》
  • 中国科技核心期刊
  • 主管单位:中国电子信息产业集团有限公司
  • 主办单位:华北计算机系统工程研究所
  • 主编:杨晖
  • 地址:北京市海淀区清华路25号
  • 邮编:100083
  • 邮箱:xinzw@ncse.com.cn
  • 电话:010-66608981 66608982
  • 国际标准刊号:ISSN:0258-7998
  • 国内统一刊号:ISSN:11-2305/TN
  • 邮发代号:2-889
  • 获奖情况:
  • 国家期刊奖,中文核心期刊奖,中国科技期刊奖,电子精品科技期刊
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:20858