位置:成果数据库 > 期刊 > 期刊详情页
基于统计式机器学习的地理本体融合模型
  • ISSN号:0253-374X
  • 期刊名称:《同济大学学报:自然科学版》
  • 时间:0
  • 分类:P208[天文地球—地图制图学与地理信息工程;天文地球—测绘科学与技术]
  • 作者机构:[1]同济大学测量与国土信息工程系,上海200092, [2]中国人民解放军理工大学全军网格技术研究中心,江苏南京210007
  • 相关基金:国家自然科学基金(40801060); 国家“八六三”高技术研究发展计划(2009AA12Z214 2008AA01A309)
中文摘要:

针对不同领域对地理事物的认知体系差异造成了地理本体异构的问题,提出了地理本体融合模型,引入统计式机器学习的方法对概念间的关系进行自动处理,并以概念间关系在不同本体出现的频度来产生其可信度,最后形成带有统计信息和领域信息的大型地理概念空间.该模型巧妙规避概念层面繁琐的异构映射过程,融合概念空间将多个地理本体所表达的概念知识融为一体,并保持了领域内的信息,有效实现了不同认知体系之间的共享.

英文摘要:

The ubiquity of geography ontology heterogeneity is caused by multiple cognitive systems for geographical object.Geography ontology fusion model was proposed by introducing the method of automatic statistical machine learning for processing relationship within the concepts.The credibility was produced according to emergence frequency of relationship between concepts in different ontology and finally a large-scale integrated geographic concept space with statistic and field information was generated.Cumbersome concept mapping process is circumvented through this model,and all the knowledge expressed in ontologies is fused while information within each field is preserved in this concept space which realize sharing between multiple cognitive systems.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《同济大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:同济大学
  • 主编:李杰
  • 地址:上海四平路1239号
  • 邮编:200092
  • 邮箱:zrxb@tongji.edu.cn
  • 电话:021-65982344
  • 国际标准刊号:ISSN:0253-374X
  • 国内统一刊号:ISSN:31-1267/N
  • 邮发代号:4-260
  • 获奖情况:
  • 国家双百期刊,第二届国家期刊奖重点科技期刊奖,1999年全国优秀高校自然科学学报一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:34557