否定地收费了(在 pH 8.2 ) 葡萄糖 oxidase (GOx, pI ca。4.2 ) 被装配到围单人赛的碳 nanotubes (SWNT ) 的表面上,它被盖住(或包) 由断然控告的聚合电解质的层 poly (dimethyldiallylammonium 氯化物)(PDDA ) ,经由形成 GOx-PDDA- SWNT nanocomposites 的静电的相互作用。Fourier 变换红外线(FTIR ) ,紫外力、电气化学的阻抗光谱学(EIS ) 被用来描绘 nanocomposites 的生长过程。在它在 PDDA-SWNT 的表面上被使不能调动以后,结果显示 GOx 保留了它的本国的第二等的 conformational 结构。一个生物传感器(Nafion-GOx-PDDA-SWNT/GC ) 被 GOx-PDDA-SWNT nanocomposites 的固定在玻璃质的碳(GC ) 的表面上开发把 Nafion (5%) 用作一个文件夹的电极。生物传感器与好稳定性,重制度和更高生物的亲密关系作为一个 electroactive 调停人在 ferrocene monocarboxylic 酸(FcM ) 的存在下面向葡萄糖的氧化显示出 electrocatalytic 活动。在一个最佳的条件下面,生物传感器能习惯于葡萄糖的察觉,介绍有 KappMca 的明显的 Michaelis-Menten 常数的 Michaelis-Menten 动力学的一个典型特征。4.5 mmol/L,与从 0.5 ~ 5.5 mmol/L 的葡萄糖的集中的一个线性范围(与 0.999 的关联系数) 并且 ca 的察觉限制。83 mol/L (在 3 的 signal-to-noise 比率) 。因此生物传感器在自从在血浆液的正常葡萄糖集中在 4.6 mmol/L 附近,在浆液察觉到葡萄糖集中是有用的。使在现在的工作使用的 GOx 不能调动的灵巧的过程将为酶(蛋白质) 支持电气化学的研究的开发,生物传感器, biofuel 房间和另外的 bioelectrochemical 设备。
The negatively charged (at pH 8.2) glucose oxidase (GOx, pI ca. 4.2) was assembled onto the surface of single-walled carbon nanotubes (SWNT), which was covered (or wrapped) by a layer of positively charged polyelectrolyte poly(dimethyldiallylammonium chloride) (PDDA), via the electrostatic interaction forming GOx-PDDASWNT nanocomposites. Fourier transform infrared (FTIR), UV-Vis and electrochemical impedance spectroscopy (EIS) were used to characterize the growth processes of the nanocomposites. The results indicated that GOx retained its native secondary conformational structure after it was immobilized on the surface of PDDA-SWNT. A biosensor (Nafion-GOx-PDDA-SWNT/GC) was developed by immobilization of GOx-PDDA-SWNT nanocomposites on the surface of glassy carbon (GC) electrode using Nafion (5%) as a binder. The biosensor showed the electrocatalytic activity toward the oxidation of glucose under the presence of ferrocene monocarboxylic acid (FcM) as an electroactive mediator with a good stability, reproducibility and higher biological affinity. Under an optimal condition, the biosensor could be used to detection of glucose, presenting a typical characteristic of Michaelis-Menten kinetics with the apparent Michaelis-Menten constant of KM^app ca. 4.5 mmol/L, with a linear range of the concentration of glucose from 0.5 to 5.5 mmol/L (with correlation coefficient of 0.999) and the detection limit of ca. 83 μmol/L (at a signal-to-noise ratio of 3). Thus the biosensor was useful in sensing the glucose concentration in serum since the normal glucose concentration in blood serum was around 4.6 mmol/L. The facile procedure of immobilizing GOx used in present work would promote the developments of electrochemical research for enzymes (proteins), biosensors, biofuel cells and other bioelectrochemical devices.