抗白粉病基因Pm21来自小麦近缘种簇毛麦。小麦一簇毛麦小片段顶端易位系NAU418(T1AS·1AL-6VS)和小片段中间插入易位系NAU419(T4BS·4BL-6VS-4BL)携带Pm21,高抗白粉病,是小麦抗病育种新种质。为了对其育种利用提供依据,以NAU418和NAU419为亲本分别与来源于不同生态区的郑麦9023等12个小麦品种杂交,杂种F1再分别与来源于不同生态区的农艺亲本进行正、反回交,研究两种易位染色体在不同小麦背景中的遗传稳定性及其通过雌雄配子的传递规律。DNA分子原位杂交结果表明,在杂种F1花粉母细胞减数分裂中期Ⅰ(Pollen Mother Cell,PMC MI),两种易位染色体分别可以与对应的小麦染色体配对形成棒状二价体。正、反交结果分析表明,NAU418中的小片段顶端易位染色体T1AS·1AL-6VS通过雌配子和雄配子的传递率分别为8.00%~50.98%和7.89%~45.07%,NAU419中的小片段中间插入易位染色体T4BS·4BL-6VS-4BL通过雌配子和雄配子的传递率分别为29.17%~52.38%和7.69%~47.06%。表明2个易位系中的易位染色体都可以通过雌、雄配子传递,但是其通过雄配子的传递率均显著低于通过雌配子的传递率。
The powdery mildew resistance gene Pm21 comes from a diploid wheat related species, Haynaldia villosa. Two Pm21-carrying small fragment translocation lines, the terminal translocation line NAU418 and the small interstitial translocation line NAU419, have been developed. Both lines are highly resistant to powdery mildew and serve as new genetic resources for improvement of disease resistance. For understanding the transmission rate of the translocation chromosomes through male and female gametes and the genetic stabilities in different wheat genetic backgrounds, the two translocations were crossed to 12 common wheat varieties from different wheat growing areas of China. The F1 hybrids were then backcrossed as reciprocally. Chromosome configurations of the obtained Fls were analyzed by fluorescence in situ hybridization (FISH) of the PMC at MI. It was found that the translocation chromosomes formed rod bivalents with their corresponding wheat chromosomes. Test crosses showed that the translocation chromosomes T1AS. 1AL-6VS and T4BS.4BL-6VS-4BL could be transmitted to their offspring. The transmission frequency of T1AS.1AL-6VS was higher through female gametes an average of 33.20%, ranging from 0.08% to 50.98% than through male gametes an average of 23.75%, ranging from 0.14% to 45.07%. Similarly, the transmission frequency of T4BS-4BL-6VS-4BL was higher through female gametes an average of 42.90%, ranging from 29.17% to 52.38% than through male gametes an average of 21.45%, ranging from 7.69% to 47.06%. These results show that the translocated chromosomes could be transmitted through male and female gametes, while genetic background has influences on the transmission rate, especially through male gametes.