位置:成果数据库 > 期刊 > 期刊详情页
基于Gauss混合模型的清浊音恢复改进算法
  • ISSN号:1000-0054
  • 期刊名称:《清华大学学报:自然科学版》
  • 时间:0
  • 分类:TN912.32[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]清华大学电子工程系,清华信息科学与技术国家实验室筹,北京100084
  • 相关基金:国家自然科学基金资助项目(60572081)
中文摘要:

为提高子带清浊音(unvoiced/voiced,U/V)解码端恢复算法在不同能量电平下的鲁棒性,提出了一种改进型能量自适应U/V参数解码端恢复算法。通过跟踪长时能量的变化轨迹,在Gauss混合模型(Gaussian mixed model,GMM)下,用归一化的能量参数和线谱频率参数(line spectral frequency,LSF)对U/V参数的分布特性进行估计。测试结果表明:在较低的能量电平下,与用绝对能量对U/V参数进行恢复的算法相比,该能量自适应U/V参数恢复算法能够将清浊音误判率降低10%~25%,并将合成语音的平均意见得分(mean opinion score,MOS)提高0.03~0.09,改善了算法的性能。

英文摘要:

The robustness of an unvoiced/voiced (U/V) speech classification recovery algorithm is improved by an energy self-adaption algorithm for the recovery of the U/V parameter. The algorithm traces the long-time changes of the energy level to estimate the statistical distribution of the U/V parameter from the normalized energy and the line spectral frequency (LSF) parameters based on the Gaussian mixed model (GMM). Tests show that for relatively low energy levels, this energy self-adaption algorithm reduces the U/V classification error rate by 10% - 25% and improves the mean opinion score (MOS) of the synthesized speech signal by about 0.03 - 0.09 compared to the original method which uses the absolute energy value.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《清华大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:清华大学
  • 主编:梁恩忠
  • 地址:北京市海淀区清华大学学研大厦B座908
  • 邮编:100084
  • 邮箱:xuebaost@tsinghua.edn.cn
  • 电话:010-62788108 62792976
  • 国际标准刊号:ISSN:1000-0054
  • 国内统一刊号:ISSN:11-2223/N
  • 邮发代号:2-90
  • 获奖情况:
  • 国家期刊奖,国家“双高”期刊,1992年以来,历次国家级和省部级一等奖,第一、二届全国优秀科技期刊一等奖,教育部优秀期...,第三届中国出版政府奖提名奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,美国应用力学评论,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:43470