针对传统螺纹图像匹配方法误匹配率高、难以实现图像拼接的问题,提出了基于尺度不变特征变换(SIFT)改进的匹配算法。先将采集图片进行枕形失真校正,在此基础上构建图像尺度空间,并在标定重叠区域内搜索高斯差分(DoG)金字塔的SIFT特征点。利用快速最近邻逼近搜索函数库(FLANN)匹配特征点,结合坐标比较和随机抽样一致性算法(RANSAC)进一步剔除误匹配,最终匹配正确率达到99%以上。实验结果表明:基于标定区域内的特征提取及匹配约束条件可提高匹配速度和精度。相比传统匹配方法,本文匹配方法对相似性较高的螺纹图像匹配具有鲁棒性和优越性,适用于螺纹桶内壁图像的全景拼接。