将主成分分析(PCA)用于肝功能检测数据特征提取,然后用支持向量机(SVM)对乙肝、丙肝、肝硬化、正常人样本建立分类模型。采用高斯径向基函数(RBF)为核函数,调节核函数参数C及σ以建立最佳支持向量机模型。该模型对训练集的识别率为99.3%,对预测集的预测率为96.4%。结果表明:PCA-SVM法建立的肝病分类模型能较好的区分乙肝、丙肝、肝硬化及正常人,且分类效果优于传统支持向量机及人工神经网络(ANN)分类模型。
Principal component analysis(PCA) is used to feature selection of the liver function testing results, and the classified model of HBV,HCV,hepatocirrhosis patients and the normal is based on Support vector machine(SVM). The radical basis function (RBF) is adopted as a kernel function of SVM,and the model adjusts C and σ to build the optimization classifier,which makes the correct classification ratio of the training set to be 99. 3%, while that of the testing set to be 96.4%. The result shows that the classified model of liver disease based on PCA-SVM can classifies the HBV, HCV, hepatocirrhosis patiems and the normal more effectively than the traditional SVM or ANN.