该文得到了Lie环分解的Krull—Schmidt定理:若L是在理想上满足极大、极小条件的Lie环,如果L=H1+H2+…+Hr=K1+K2+…+Ks是L的两个Remak分解,即Hi和Kj是不可分解的,那么r=s,并且存在L的一个中心自同构a,使在适当排列Kj的顺序后,Hi^a=Ki,进一步地,对任意的k=1,2,…,r,L=K1+K2…+Kk+Hk+1+…Hr.如果L=H1+H2+…Hr是L的一个Remak分解,那么这个分解是L的唯一Remak分解当且仅当对L的任意正规自同态θ有Hi^θ≤Hi,i=1,2,…,r.
In this paper, the authors get the Krull-Schmidt theorem for Lie rings. Let L be a Lie ring satisfying the maximal and minimal conditions on ideals. If L=H1+H2+…+Hr=K1+K2+…+Ks are two Remak decompositions of L, then r = s and there is a central automorphism α of L such that, after suitable relabeling of the Kj's (if necessary), Hi^α = Ki and L = K1 + K2 +…+Kk + Hk+1 +… Hr for k = 1, 2, …, r. Furthermore, L = H1 +H2 +…+ Hr is the only Remakdecomposition of L (up to the order of factors of the direct sums) if and only if Hi^θ≤ Hi for every normal endomorphism θ of L and i = 1, 2,.., r.