首先从Hopfield自联想记忆模型(HAM)出发,对其回忆规则运用机器学习中流行的核技巧,构建一个核自联想记忆模型框架(KAM).并通过核函数的选取,使指数型相关联想记忆模型(ECAM)和改进的ECAM(IEC—AM)模型成为其中的两个特例.然后针对二维视觉图像的识别,在核函数中引入反映视觉特性的二维(2-D)距离因子,进一步提出一个距离加权的2-D核自联想记忆模型框架(DW2D—KAM).由此较大改进KAM对图像的存储和纠错性能,并且使该模型更加符合神经生理学和解剖学的思想.最后,计算机模拟不仅证实DW2D—KAM比KAM在字符识别上具有更高的存储和纠错性能,而且其同样优于Seow和Asari提出的模块化HAM的识别效果.
By using the kernel trick to modify Hopfield auto-associative memory model (HAM), a framework of kernel auto-association memory model (KAM) is proposed. KAM makes exponential correlation associative memory ( ECAM ) and improved ECAM ( IECAM ) become two special cases. Then, the framework of distance weighted 2-D kernel auto-association memory model (DW2D-KAM) is constructed by introducing distance factors tO the kernels. DW2D-KAM improves the Storage capacity and error-correcting capability of KAM when recognizing binary visual images. Simulation results verify that DW2D-KAM has higher storage capacity and better error-correcting capability than those of KAM, and outperforms the recently proposed modular HAM by Seow and Asari.