The ultimate strength of reinforced concrete(RC) rectangular members subjected to combined bending,shear and torsion is obtained from the limit analysis proposed in the present paper. Based on a warped failure surface determined by external loads, and a reasonable assumed stress distribution balancing external loads but not violating the yield condition, the bending-shear-torsion interaction can be derived from equilibrium conditions.According to the definition of lower-bound theorem in limit analysis, the calculated ultimate loads will be carried safely by the structure. The present method is a simple approach to obtain carrying capacities for RC elements under complex external loads. After comparing with the test results, a good agreement has been observed. The present method can be extended to explain the failure mechanism of RC members subjected to axial loads, and it is possible to develop a simple unified theory of RC members for engineering.
The ultimate strength of reinforced concrete (RC) rectangular members subjected to combined bending, shear and torsion is obtained from the limit analysis proposed in the present paper. Based on a warped failure surface determined by external loads, and a reasonable assumed stress distribution balancing external loads but not violating the yield condition, the bending-shear-torsion interaction can be derived from equilibrimn conditions. According to the definition of lower-bound theorem in limit analysis, the calculated ultimate loads will be carried safely by the structure. The present method is a simple approach to obtain carrying capacities for RC elements under complex external loads. After comparing with the test results, a good agreement has been observed. The present method can be extended to explain the failure mechanism of RC members subjected to axial loads, and it is possible to develop a simple unified theory of RC members for engineering.