本文证明了:当核函数Ω是零次齐次的,且满足某种对数型Lipschitz条件时,Marcinkiewicz积分μΩ的交换子是从局部Hardy空间h^1(R^n)到空间h^1q(R^n)=h^1(R^n)+L^q(R^n)(q〉1)上的有界算子.
We show that the commutator of Marcinkiewicz integral μΩ is bounded from local Hardy spaces h^1(R^n) into spaces hl(Rn) = h^1(R^n) + L^q(R^n) (q 〉 1). Here the kernel is a homogeneous function of degree zero with cancellation property and satisfies the logarithmic type Lipschitz conditions.