本文致力于阐述调和分析与现代偏微分方程研究的关系,特别是奇异积分算子、拟微分算子、Fourier限制性估计、Fourier频率分解方法在椭圆边值问题、非线性发展方程研究中的重要作用,对于偏微分方程研究的各种方法进行了比较与分析,指出了偏微分方程的调和分析方法的优点与局限性,与此同时,还给出了偏微分方程的调和分析方法这一领域的最新研究进展。
This survey paper is devoted to ysis and PDEs. In particular, we emphasize the discribe the relation between harmonic analimportant role of singular integral operators, pesudo-differential operators, Fourier restriction estimates and Fourier frequency decomposition in the study of boundary value problem for elliptic equations and Cauchy problem for nonlinear evolution equations. We also give some analysis and compare to different study methods of partial differential equations, and point out the advantage and disadvantage of harmonic analysis method for partial differential equations. At last, analysis method for partial differential equations.