对一种结合离散调制和反向协调,适用于长距离传输的连续变量量子密钥分发四态协议的安全性进行了严格证明.这种协议中Alice发送的态与高斯调制协议中的有一定差异,这种差异可以等价成信道衰减和额外噪声.另外,由于Alice不可能做到精确调制,这会导致其发送的相干态中含有噪声.把这种调制引起的噪声看作光源的噪声,并推导出了在光源噪声不能被窃听者所利用的条件下的安全码率的下界.为了避免实验上快速、随机的控制本地振荡光的相位,还将无开关协议和四态协议相结合,分析了其安全性.
Security of continuous-variable quantum key distribution with four-state protocol based on discrete modulation of noisy coherent states is analyzed. Combing discrete modulation and reverse reconciliation, this protocol can be used for long distance cryptography. There is a small difference between the state Alice sends in the discrete modulation protocol and the Gaussian modulation protocol, and it can be treated as excess noise and loss in the channel. As Alice cannot do a precise modulation, she will induce noise to the coherent state. We look this noise as the source noise and derive a lower bound to the secure key rate assuming the eavesdropper cannot benefit from the noise in the source. For avoiding the fast and random phase locking between the signal and local oscillator in experiment, we also analyze the security of four-state protocol using no-switching scheme.