由于数据挖掘技术日益广泛地应用于各个领域,而大多数领域中数据都存在缺失值,因此基于缺失数据的数据挖掘方法的研究具有重要意义.利用直接删除、特殊值填充、平均值填充、Robust方法4种处理缺失值的方法建立4个缺失值处理模型以及相应的朴素贝叶斯分类器模型.通过在5个实际数据集上进行实验比较,并采用五重交叉验证来检验这些模型的性能.结果表明,用这些模型处理缺失值构建的朴素贝叶斯分类器是有效的.