位置:成果数据库 > 期刊 > 期刊详情页
一种用于贝叶斯分类器的文本特征选择方法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京交通大学计算机与信息技术学院,北京100044, [2]山东财政学院信息与计算科学系,济南250014
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60503017,No.60673089).
中文摘要:

特征选择是文本分类中一种重要的文本预处理技术,它能够有效地提高分类器的精度和效率。文本分类中特征选择的关键是寻求有效的特征评价指标。一般来说,同一个特征评价指标对不同的分类器,其效果不同,由此,一个好的特征评价指标应当考虑分类器的特点。由于朴素贝叶斯分类器简单、高效而且对特征选择很敏感,因此,对用于该种分类器的特征选择方法的研究具有重要的意义。有鉴于此,提出了一种有效的用于贝叶斯分类器的多类别文本特征评价指标:CDM。利用贝叶斯分类器在两个多类别的文本数据集上进行了实验。实验结果表明提出的CDM指标具有比其它特征评价指标更好的特征选择效果。

英文摘要:

Feature selection is an important preprocessing technology in text classification.It can improve the efficiency and accuracy of a text classifier.The key of feature selection in text classification is to find an effective feature evaluation metric.In general,the effect of a feature evaluation metric for various classifiers can be very different,and thus a good feature evaluation metric should consider classifier characteristics.As the Naive Bayesian classifier is very simple and efficient and highly sensitive to feature selection, so the research of feature selection specially for it is important.This paper presents a feature evaluation metric for the Naǐve Bayesian classifier applied on multi-class text datasets:Class Discriminating Measure (CDM).Experiments of text classification with Naǐve Bayesian classifiers were carried out on two multi-class texts collections.As the results indicate,CDM gains obviously better selecting effect than other feature selection approaches.

同期刊论文项目
期刊论文 24 会议论文 12 著作 1
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887