研究一类含参数的非线性差分方程:x(n+1)=x(n)exp{--δ[x(n)-x}(其中δ≥0为参数,x^-为非0常数),作为离散映射时研究其不动点及其性质,获得了参数在一定范围内变化时不动点的性态,而作为差分方程时讨论了其周期解存在及其稳定性.
This paper studies a class of nonlinear difference equation with parameter x(n) exp{-δ[x(n) -x^-]} (δ≥ 0 is a parameter,x ^-≠0 is a constant), as a discr points and properties, obtained the parameter changes within a certain scope and as a difference equation we study its the periodic solution and its stability ete mapping the characte of difference we s r of x(n + 1) = tudy its fixed fixed points, equatlon